Lateralized activation of Cluster N in the brains of migratory songbirds.

نویسندگان

  • Miriam Liedvogel
  • Gesa Feenders
  • Kazuhiro Wada
  • Nikolaus F Troje
  • Erich D Jarvis
  • Henrik Mouritsen
چکیده

Cluster N is a cluster of forebrain regions found in night-migratory songbirds that shows high activation of activity-dependent gene expression during night-time vision. We have suggested that Cluster N may function as a specialized night-vision area in night-migratory birds and that it may be involved in processing light-mediated magnetic compass information. Here, we investigated these ideas. We found a significant lateralized dominance of Cluster N activation in the right hemisphere of European robins (Erithacus rubecula). Activation predominantly originated from the contralateral (left) eye. Garden warblers (Sylvia borin) tested under different magnetic field conditions and under monochromatic red light did not show significant differences in Cluster N activation. In the fairly sedentary Sardinian warbler (Sylvia melanocephala), which belongs to the same phyolgenetic clade, Cluster N showed prominent activation levels, similar to that observed in garden warblers and European robins. Thus, it seems that Cluster N activation occurs at night in all species within predominantly migratory groups of birds, probably because such birds have the capability of switching between migratory and sedentary life styles. The activation studies suggest that although Cluster N is lateralized, as is the dependence on magnetic compass orientation, either Cluster N is not involved in magnetic processing or the magnetic modulations of the primary visual signal, forming the basis for the currently supported light-dependent magnetic compass mechanism, are relatively small such that activity-dependent gene expression changes are not sensitive enough to pick them up.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Night-vision brain area in migratory songbirds.

Twice each year, millions of night-migratory songbirds migrate thousands of kilometers. To find their way, they must process and integrate spatiotemporal information from a variety of cues including the Earth's magnetic field and the night-time starry sky. By using sensory-driven gene expression, we discovered that night-migratory songbirds possess a tight cluster of brain regions highly active...

متن کامل

Night-time neuronal activation of Cluster N in a day- and night-migrating songbird

Magnetic compass orientation in a night-migratory songbird requires that Cluster N, a cluster of forebrain regions, is functional. Cluster N, which receives input from the eyes via the thalamofugal pathway, shows high neuronal activity in night-migrants performing magnetic compass-guided behaviour at night, whereas no activation is observed during the day, and covering up the birds' eyes strong...

متن کامل

A Visual Pathway Links Brain Structures Active during Magnetic Compass Orientation in Migratory Birds

The magnetic compass of migratory birds has been suggested to be light-dependent. Retinal cryptochrome-expressing neurons and a forebrain region, "Cluster N", show high neuronal activity when night-migratory songbirds perform magnetic compass orientation. By combining neuronal tracing with behavioral experiments leading to sensory-driven gene expression of the neuronal activity marker ZENK duri...

متن کامل

Magnetoreception and its use in bird navigation.

Recent advances have brought new insight into the physiological mechanisms that enable birds and other animals to use magnetic fields for orientation. Many birds seem to have two magnetodetection senses, one based on magnetite near the beak and one based on light-dependent radical-pair processes in the bird's eye(s). Among the most exciting recent results are: first, behavioural responses of bi...

متن کامل

Polarized light cues underlie compass calibration in migratory songbirds.

Migratory songbirds use the geomagnetic field, stars, the Sun, and polarized light patterns to determine their migratory direction. To prevent navigational errors, it is necessary to calibrate all of these compass systems to a common reference. We show that migratory Savannah sparrows use polarized light cues from the region of sky near the horizon to recalibrate the magnetic compass at both su...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The European journal of neuroscience

دوره 25 4  شماره 

صفحات  -

تاریخ انتشار 2007